En 2023, fuimos testigos de la adopción generalizada de herramientas de inteligencia artificial como ChatGPT, Dall-E y Bard. Sin embargo, junto a los avances positivos, también hubo aspectos negativos, especialmente en el ámbito del fraude. Para comprender mejor cómo la IA está dando forma al futuro de la prevención del fraude, The Fintech Times organizó recientemente un seminario web. Dirigido por Polly Jean Harrison, editora de artículos de Fintech Times, el seminario web contó con un panel de expertos de la industria: Stuart Wells, director de tecnología de Jumio, Kevin Lee, vicepresidente de confianza y seguridad digitales de Sift, y Chris Gerda, ex especialista en prevención de riesgos y fraude. Oficial de Bottomline Technologies.
Juntos exploraron las últimas tendencias en fraude impulsado por IA, cómo los estafadores utilizan la IA para sus propios fines y cómo las empresas pueden aprovechar la IA para prevenir el fraude y proteger a sus clientes.
Aquí están las cinco conclusiones clave:
Al iniciar la sesión, Lee señaló que si bien la IA (especialmente herramientas como ChatGPT) se ha debatido ampliamente últimamente, es importante comprender que existen muchos tipos de IA y tecnologías adyacentes dentro del panorama del fraude. Por ejemplo, señaló que los estafadores utilizan con frecuencia bots y scripts para robar a empresas y consumidores. También mencionó que su equipo ha visto un aumento en el "fraude como servicio", en el que los estafadores ofrecen defraudar a otros por una tarifa, como lanzar ataques de bots u otros ataques a gran escala contra una plataforma en particular.
Wells destacó el aumento de las técnicas de inteligencia artificial generativa y señaló que los deepfakes están aumentando. Los estafadores ahora pueden eludir sin esfuerzo las cámaras web o las cámaras de los teléfonos para inyectar contenido deepfake. A diferencia de los ataques tradicionales en los que los estafadores simplemente colocaban una fotografía frente a la cámara, pegaban una imagen en un teléfono móvil o empleaban máscaras de silicona, los deepfakes son mucho más sofisticados. Han evolucionado hasta un punto en el que son imperceptibles para un ojo inexperto. Como tal, es vital desarrollar modelos de aprendizaje automático con la capacidad de detectar estas formas intrincadas y avanzadas de ataques.
"No se trata sólo de que los estafadores puedan atacar varios dispositivos, sino que también pueden hacerlo de manera sofisticada a escala", comentó Wells, añadiendo que pueden tomar información privada y aprovecharla para intentar chantajear. Un factor que contribuye a esta tendencia es que los estafadores pueden acceder fácilmente al código fuente y a identificaciones sintéticas que les permiten crear deepfakes, acumular grandes cantidades de datos e incluso generar datos sintéticos.
Gerda compartió además que si los deepfakes poseen voces y rostros convincentes que el sistema espera encontrar, pueden generar confianza. Por lo tanto, uno de los desafíos radica en que las empresas vuelvan a capacitar sus sistemas incorporando puntos de datos adicionales, como nombres de usuario, contraseñas, sistemas operativos, máquinas en la nube y más. Al volver a capacitar y aprovechar la información del dispositivo que se utiliza para acceder a una cuenta como parte del proceso de autenticación, estos sistemas pueden proporcionar una capa mejorada de seguridad al utilizar la información como señal de validación para que un usuario inicie sesión. La adopción de este enfoque ayuda a establecer patrones que pueden ayudar significativamente a combatir mejor los deepfakes y otros fraudes impulsados por la IA.
Basándose en su experiencia en el equipo de operaciones, Lee compartió que "obtener recursos de desarrollo a menudo puede representar un desafío para numerosas empresas". Comentó que aquí es donde la IA puede ser fundamental para su éxito, ya que puede crear herramientas que agilicen el uso de consultas SQL para identificar diversas redes de fraude y proveedores de ataques. Estas herramientas pueden notificar rápidamente a los equipos sobre picos inusuales en los patrones de tráfico y facilitar acciones de respuesta más rápidas.
Wells y Gerda destacaron la importancia de contar con un consorcio de amenazas donde las empresas puedan compartir información, patrones de identidad y datos relacionados con ataques de fraude. Esto reduciría efectivamente el riesgo de fraude que podría ocurrir debido a la falta de conocimiento sobre un tipo particular de ataque de fraude impulsado por IA, y también podría ayudar a reducir costos.
Wells destacó además la importancia de la colaboración y la cooperación, incluido el intercambio de datos y mejores prácticas entre expertos en fraude. Estos esfuerzos pueden ayudar a las empresas a ser más receptivas, lo que lleva a una mayor satisfacción del cliente y a una reducción del riesgo de fraude.
Wells enfatizó que las empresas deben salvaguardar sus activos de datos implementando el conjunto adecuado de análisis y cifrado. Es crucial fomentar una cultura de concientización sobre la seguridad y brindar la capacitación necesaria para crear una estrategia sólida de prevención del fraude. Este enfoque permitirá a las empresas tomar las medidas esenciales para reducir eficazmente el riesgo de fraude.
Lee destacó el elemento humano en la detección de fraude y destacó la importancia de que los equipos comprendan las vulnerabilidades de una empresa y cómo aplicar ingeniería inversa a los ataques de fraude. Y añadió: "Si no lo solucionamos internamente, alguien externo lo hará por nosotros". Por lo tanto, los equipos de riesgo deben ser proactivos a la hora de identificar amenazas potenciales y buscar formas en que sus plataformas puedan verse comprometidas.
Lee señaló que a medida que las regulaciones continúan evolucionando, las organizaciones deben trabajar con sus equipos legales para determinar los tipos de datos que pueden procesar y utilizar. Especialmente teniendo en cuenta los grandes volúmenes de datos que manejan internamente, las organizaciones deben ejercer un alto grado de escrutinio.
Wells subrayó la importancia de que las empresas tengan una política de gobierno ético. Pero tener una política de gobernanza es una cosa, pero hacerla cumplir es un desafío completamente diferente. Además, las empresas deberían asegurarse de que sus modelos de aprendizaje automático sean explicables, especialmente teniendo en cuenta la creciente velocidad y escala de los ciberataques.
El seminario web concluyó con la nota de que los estafadores seguirán aprovechando los modelos de aprendizaje automático y la inteligencia artificial. Por lo tanto, las empresas también deben adoptar la IA para superar en innovación a los estafadores.
Vea la grabación del seminario web de The Fintech Times titulado “Lo bueno, lo malo y lo fraudulento” aquí o explore nuestras próximas sesiones bajo demanda .
En 2023, fuimos testigos de la adopción generalizada de herramientas de inteligencia artificial como ChatGPT, Dall-E y Bard. Sin embargo, junto a los avances positivos, también hubo aspectos negativos, especialmente en el ámbito del fraude. Para comprender mejor cómo la IA está dando forma al futuro de la prevención del fraude, The Fintech Times organizó recientemente un seminario web. Dirigido por Polly Jean Harrison, editora de artículos de Fintech Times, el seminario web contó con un panel de expertos de la industria: Stuart Wells, director de tecnología de Jumio, Kevin Lee, vicepresidente de confianza y seguridad digitales de Sift, y Chris Gerda, ex especialista en prevención de riesgos y fraude. Oficial de Bottomline Technologies.
Juntos exploraron las últimas tendencias en fraude impulsado por IA, cómo los estafadores utilizan la IA para sus propios fines y cómo las empresas pueden aprovechar la IA para prevenir el fraude y proteger a sus clientes.
Aquí están las cinco conclusiones clave:
Al iniciar la sesión, Lee señaló que si bien la IA (especialmente herramientas como ChatGPT) se ha debatido ampliamente últimamente, es importante comprender que existen muchos tipos de IA y tecnologías adyacentes dentro del panorama del fraude. Por ejemplo, señaló que los estafadores utilizan con frecuencia bots y scripts para robar a empresas y consumidores. También mencionó que su equipo ha visto un aumento en el "fraude como servicio", en el que los estafadores ofrecen defraudar a otros por una tarifa, como lanzar ataques de bots u otros ataques a gran escala contra una plataforma en particular.
Wells destacó el aumento de las técnicas de inteligencia artificial generativa y señaló que los deepfakes están aumentando. Los estafadores ahora pueden eludir sin esfuerzo las cámaras web o las cámaras de los teléfonos para inyectar contenido deepfake. A diferencia de los ataques tradicionales en los que los estafadores simplemente colocaban una fotografía frente a la cámara, pegaban una imagen en un teléfono móvil o empleaban máscaras de silicona, los deepfakes son mucho más sofisticados. Han evolucionado hasta un punto en el que son imperceptibles para un ojo inexperto. Como tal, es vital desarrollar modelos de aprendizaje automático con la capacidad de detectar estas formas intrincadas y avanzadas de ataques.
"No se trata sólo de que los estafadores puedan atacar varios dispositivos, sino que también pueden hacerlo de manera sofisticada a escala", comentó Wells, añadiendo que pueden tomar información privada y aprovecharla para intentar chantajear. Un factor que contribuye a esta tendencia es que los estafadores pueden acceder fácilmente al código fuente y a identificaciones sintéticas que les permiten crear deepfakes, acumular grandes cantidades de datos e incluso generar datos sintéticos.
Gerda compartió además que si los deepfakes poseen voces y rostros convincentes que el sistema espera encontrar, pueden generar confianza. Por lo tanto, uno de los desafíos radica en que las empresas vuelvan a capacitar sus sistemas incorporando puntos de datos adicionales, como nombres de usuario, contraseñas, sistemas operativos, máquinas en la nube y más. Al volver a capacitar y aprovechar la información del dispositivo que se utiliza para acceder a una cuenta como parte del proceso de autenticación, estos sistemas pueden proporcionar una capa mejorada de seguridad al utilizar la información como señal de validación para que un usuario inicie sesión. La adopción de este enfoque ayuda a establecer patrones que pueden ayudar significativamente a combatir mejor los deepfakes y otros fraudes impulsados por la IA.
Basándose en su experiencia en el equipo de operaciones, Lee compartió que "obtener recursos de desarrollo a menudo puede representar un desafío para numerosas empresas". Comentó que aquí es donde la IA puede ser fundamental para su éxito, ya que puede crear herramientas que agilicen el uso de consultas SQL para identificar diversas redes de fraude y proveedores de ataques. Estas herramientas pueden notificar rápidamente a los equipos sobre picos inusuales en los patrones de tráfico y facilitar acciones de respuesta más rápidas.
Wells y Gerda destacaron la importancia de contar con un consorcio de amenazas donde las empresas puedan compartir información, patrones de identidad y datos relacionados con ataques de fraude. Esto reduciría efectivamente el riesgo de fraude que podría ocurrir debido a la falta de conocimiento sobre un tipo particular de ataque de fraude impulsado por IA, y también podría ayudar a reducir costos.
Wells destacó además la importancia de la colaboración y la cooperación, incluido el intercambio de datos y mejores prácticas entre expertos en fraude. Estos esfuerzos pueden ayudar a las empresas a ser más receptivas, lo que lleva a una mayor satisfacción del cliente y a una reducción del riesgo de fraude.
Wells enfatizó que las empresas deben salvaguardar sus activos de datos implementando el conjunto adecuado de análisis y cifrado. Es crucial fomentar una cultura de concientización sobre la seguridad y brindar la capacitación necesaria para crear una estrategia sólida de prevención del fraude. Este enfoque permitirá a las empresas tomar las medidas esenciales para reducir eficazmente el riesgo de fraude.
Lee destacó el elemento humano en la detección de fraude y destacó la importancia de que los equipos comprendan las vulnerabilidades de una empresa y cómo aplicar ingeniería inversa a los ataques de fraude. Y añadió: "Si no lo solucionamos internamente, alguien externo lo hará por nosotros". Por lo tanto, los equipos de riesgo deben ser proactivos a la hora de identificar amenazas potenciales y buscar formas en que sus plataformas puedan verse comprometidas.
Lee señaló que a medida que las regulaciones continúan evolucionando, las organizaciones deben trabajar con sus equipos legales para determinar los tipos de datos que pueden procesar y utilizar. Especialmente teniendo en cuenta los grandes volúmenes de datos que manejan internamente, las organizaciones deben ejercer un alto grado de escrutinio.
Wells subrayó la importancia de que las empresas tengan una política de gobierno ético. Pero tener una política de gobernanza es una cosa, pero hacerla cumplir es un desafío completamente diferente. Además, las empresas deberían asegurarse de que sus modelos de aprendizaje automático sean explicables, especialmente teniendo en cuenta la creciente velocidad y escala de los ciberataques.
El seminario web concluyó con la nota de que los estafadores seguirán aprovechando los modelos de aprendizaje automático y la inteligencia artificial. Por lo tanto, las empresas también deben adoptar la IA para superar en innovación a los estafadores.
Vea la grabación del seminario web de The Fintech Times titulado “Lo bueno, lo malo y lo fraudulento” aquí o explore nuestras próximas sesiones bajo demanda .